

[Daily Question Pure Mathematics Day 2 Solutions](#)

Question Number	Scheme	Marks
(a)	$f(x) \geq 3$	M1A1 (2)
(b)	An attempt to find $2 3-4x +3$ when $x=1$ Correct answer $fg(1) = 5$	M1 A1 (2)
(c)	$y = 3 - 4x \Rightarrow 4x = 3 - y \Rightarrow x = \frac{3-y}{4}$ $g^{-1}(x) = \frac{3-x}{4}$	M1 A1 (2)
(d)	$[g(x)]^2 = (3-4x)^2$ $gg(x) = 3 - 4(3 - 4x)$ $gg(x) + [g(x)]^2 = 0 \Rightarrow -9 + 16x + 9 - 24x + 16x^2 = 0$ $16x^2 - 8x = 0$ $8x(2x-1) = 0 \Rightarrow x = 0, 0.5 \quad \text{oe}$	B1 M1 A1 M1A1 (5) (11 marks)

Notes for Question

(a)

M1 Attempt at calculating f at $x=0$. Sight of 3 is sufficient. Accept $f(x) > 3$ and $x > 3$ for M1,

A1 $f(x) \geq 3$. Accept $y \geq 3$, range ≥ 3 , $[3, \infty)$

Do not accept $f(x) > 3$, $x \geq 3$

The correct answer is sufficient for both marks.

(b)

M1 A full method of finding $fg(1)$. The order of substituting into the expressions must be correct and $2|x|+3$ must be used as opposed to $2x+3$

Accept an attempt to calculate $2|x|+3$ when $x = -1$.

Accept an attempt to put $x=1$ into $3-4x$ and then substituting their answer to $3-4x|_{x=1}$ into $2|x|+3$

Do not accept the substitution of $x=1$ into $2|x|+3$, followed by their result into ' $3-4x$ '

This is evidence of incorrect order.

A1 $fg(1)=5$.

Watch for $1 \xrightarrow{3-4x} 1 \xrightarrow{2|x|+3} 5$ which is M1A0

(c)

M1 Award for an attempt to make x or a swapped y the subject of the formula. It must be a full method and cannot finish $4x = ..$

You can condone at most one 'arithmetic' error for this method mark.

$y = 3 - 4x \Rightarrow 4x = 3 + y \Rightarrow x = \frac{3+y}{4}$ is fine for the M1 as there is only one error

$y = 3 - 4x \Rightarrow 4x = 3 - y \Rightarrow x = \frac{3}{4} - \frac{y}{4}$ is fine for the M1 as there is only one error

$y = 3 - 4x \Rightarrow 4x = 3 + y \Rightarrow x = \frac{3}{4} + \frac{y}{4}$ is M0 as there are two arithmetic errors

A1 Obtaining a correct expression $g^{-1}(x) = \frac{3-x}{4}$ oe such as $g^{-1}(x) = \frac{x-3}{-4}$, $g^{-1}(x) = \frac{3}{4} - \frac{x}{4}$

It must be in terms of x , but could be expressed 'y=' or $g^{-1}(x) \rightarrow$

(d)

B1 Sight of $[g(x)]^2 = (3-4x)^2$. If only the expanded version appears it must be correct

M1 A full attempt to find $gg(x) = 3 - 4(3 - 4x)$

Condone invisible brackets. Note that it may appear in an equation

A1 $16x^2 - 8x = 0$ Accept other alternatives such as $2x^2 = x$

M1 For factorising their quadratic or cancelling their $Ax^2 = Bx$ by x to get ≥ 1 value of x

If they have a 3TQ then usual methods are applicable.

A1 Both values correct $x = 0, 0.5$ oe